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Abstract

The recent success of deep learning is driving a trend
towards structurally complex computer vision models
that combine feature extraction with predictive ele-
ments into integrated pipelines. While some of these
models have achieved breakthrough results in applica-
tions like object recognition, they are difficult to de-
sign and tune, impeding progress. We feel that vi-
sual analysis can be a powerful tool to aid iterative
development of deep model pipelines. Building on fea-
ture evaluation work in the computer vision commu-
nity, we introduce ML-o-scope, an interactive visual-
ization system for exploratory analysis of convolutional
neural networks, a prominent type of pipelined model.
We present ML-o-scope’s time-lapse engine that pro-
vides views into model dynamics during training, and
evaluate the system as a support for tuning large scale
object-classification pipelines.

1 Introduction

A new generation of pipelined machine learning models
is achieving significantly higher performance than older
approaches to computer vision applications. Thanks to
the large scale of online activity data, and to novel ways,
like crowd-sourcing, of collecting it, data sets of un-
precedented size and depth are now available for mod-
eling [5] [16]. At the same time, hardware advances
and specialized software implementations that take ad-
vantage of acceleration [8] [7] and distribution [2] have
enabled larger models to be trained on larger data sets.
As a result, models are growing correspondingly with
data sets in order to encode the richness of sample pop-
ulations with the highest possible fidelity.

The growth of model complexity, however, is not sim-
ply in terms of sheer size, or number of model param-
eters, but rather in terms of how many distinct stages
of processing a model composes. Successful large scale

models combine series of pipelined operators into a co-
herent data flow. Such pipelined models treat an appli-
cation from end-to-end, including raw input normaliza-
tion, stages of feature extraction, and ultimately, pre-
diction.

Artificial neural networks are a classic example of a
pipeline, with each layer performing a function and
the back-propagation algorithm providing a unified ap-
proach to training [13]. The momentum behind deep
learning, or the application of many-layered convolu-
tional neural networks to large scale learning problems,
has proved a major driver of pipelined model complex-
ity. The recent success of deep learning underscores the
importance of large, composite models and the need for
tools to manage their complexity [10] [19].

New tools are necessary, because large models present
new challenges to designers. The fundamental challenge
of working with pipelined models is to decide what op-
erators to include, and in what order, to maximize pre-
dictive accuracy and avoid over-fit. Although individual
operators have well defined functions, their combined ef-
fect can be difficult to predict and optimize. Moreover,
each operator often has associated hyper-parameters
that must be tuned for peak performance. Because up-
stream operators affect the input to downstream ones,
decisions about components and their parameters can-
not be made in isolation from one another: the opti-
mization space is very large. In the case of large con-
volutional neural networks, these difficulties have made
pipeline design impossible for all but a small number
of expert practitioners with extensive experience in the
field.

We propose visualization as a means to address the
challenges of scale and complexity, and to make high-
end machine learning pipelines approachable. Visual-
izations of different pipeline states can illustrate why
particular configurations succeed or fail, and at what
points particular designs break down. These visuals
can allow non-experts to better explore and understand
the internal dynamics of pipelined models, and gain in-
sights into what works from just a few model instances.
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In this way, the optimization space can be navigated
quickly.

To demonstrate the utility of visualization applied to
pipeline tuning, we have developed ML-o-scope, an in-
teractive visualization system for analysis of deep model
pipelines. Given a set of model snapshots, saved during
training, an input corpus, and adaptor code to query
them, ML-o-scope offers navigation, displays, and in-
teractions that allow users to explore their model and
its relation to the data.

While visualization may not suit all types of input data,
we focus on computer vision applications where data is
visual by nature. The modular composition of pipelines
facilitates inspection of intermediate data, i.e., transfor-
mations of images as they pass through the model. In
certain cases, operators themselves are visualizable. To
take convolutional operators as an example, we can vi-
sualize their parameters as image filters. Recent work
has shown that visualization of these reconstructed in-
termediate states can be an aid to model tuning [19],
[17].

Automation has been proposed as an alternative ap-
proach to pipeline tuning [18], but only for modestly
sized models. An automated tuning algorithm will se-
lect a series of parameter settings and train and evaluate
a model for each setting, eventually returning the high-
est performing one. But with models’ size complexity
growing into the tens of millions or even the billions
of parameters [2], it can take days or even weeks to
train a single instance of a top-performing model. At
this scale, training time is too great, and the search
space too large, for automated tuning to have much im-
pact without expert guidance in the context of a defined
workflow.

ML-o-scope targets an iterative workflow for develop-
ment and refinement of pipelined models. At a given
stage in the design process, a user trains a pipelined
architecture and saves regular checkpoints of its state
during the training process. The user then uses ML-
o-scope to inspect individual pipeline stages; ana-
lyze properties of the training process, like convergence
rates; and diagnose weaknesses. These observations
lead to revisions to the model architecture and further
rounds of training, visualization, and assessment.

To evaluate its usefulness, we apply ML-o-scope to
several pipelines for visual object classification, trained
on the CIFAR-10 and ILSVRC 2012 (ImageNet) data
sets. We find that the system is a powerful tool for ex-
ploratory analysis of the tested models, and in practice,
allows users to find, diagnose, and act on interesting
properties of these complex models.

2 Related Work

Recent work by Zeiler and Fergus [19] demonstrates the
use of visualization to analyze deep convolutional neu-
ral networks. They apply a technique called deconvo-
lution [20] to construct illuminating visual representa-
tions of individual points in the model. In short, they
highlight regions of a sample image—from simple pat-
terns to complex objects like faces—that maximize the
output of part of the model. While these visualiza-
tions are compelling, the authors find direct views of
parameters better suited to model improvement. They
use visualizations of filters from the model design of
Krizhevsky, Sutskever, and Hinton [10] to adjust two
hyper-parameters and consequently boost performance
significantly. With ML-o-scope, we aim to extend
their work on visual parameter tuning with an interac-
tive system and by adding the time dimension to anal-
ysis.

Visualization has been used to explicate convolutional
neural networks since some of the earliest implementa-
tions. LeNet [12], a system for handwritten digit recog-
nition, and one of the the first to achieve near-human
accuracy, notably includes an interactive visualization
system to display predictions and features extracted
from input images. The visualizations allow direct and
compelling demonstration of important properties of the
system like invariance to translations and deformations
of the input. While LeNet’s visualizations provide evi-
dence for the system’s merits, they do not serve as de-
sign aids to practitioners.

Beyond neural networks, visualization has been used in
computer vision more generally as a tool to aid in fea-
ture evaluation. In [17], Vondrick, Khosla, and Mal-
isiewicz argue for the necessity of visual inspection of
image features to understand models’ failures. They
use feature inversion algorithms, whereby image fea-
tures are transformed back into the original, human-
comprehensible image-space, thereby giving intuitive
access to abstract features. Le, et al. [11] perform in-
verse optimization on a model trained by unsupervised
learning to construct the optimal inputs for single pa-
rameters. In particular, they find single deep neurons
trained to respond to faces (both human and feline)
and bodies. ML-o-scope incorporates similar feature
visualizations together with an interactive interface to
enable exploration and analysis of individual vision op-
erators in the context of a complete pipeline.

Much recent work explores the growing design space
of machine learning pipelines, and convolutional neu-
ral networks in particular. Jarrett, et al. [6] evaluate
architectural variations of different hand-designed net-
works on several data sets. Others, like Yamins, Tax,
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Figure 1. The ML-o-scope user interface.

and Bergstra [18], use Bayesian methods to automati-
cally search the parameter space of convolutional net-
works. ML-o-scope intends to supplement such efforts
by helping users develop heuristics to guide search and
evaluation in this increasingly complex space.

3 Background

We begin by defining machine learning pipelines and ex-
ploring the design space of one particularly important
example: deep convolutional neural networks. Briefly,
we will highlight how major components and opera-
tors in these systems work, and how a whole pipeline
is trained. While these networks can be trained for un-
supervised learning tasks, we focus on the supervised
case.

3.1 Pipelined Models

To apply machine learning to a problem usually requires
two steps. The first is to identify and possibly engineer
a good set of predictive features from raw data and the
second is to train a model on these features. Formal

machine learning focuses mainly on the second problem,
and provides a variety of techniques and guidance to
solve it. Feature extraction, however, remains an ad hoc
process that depends greatly on the problem domain.
For applications like computer vision where the best
inputs to a classifier are not at all obvious—how does
one get from a bitmap of pixels to a catalog of objects?—
improving model performance consists almost entirely
in improving the features fed in.

Pipelined models seek to couple feature extraction with
prediction components so that they can be co-designed
and optimized. A pipelined model is a series of op-
erators that first preprocess raw data, then extract fea-
tures, and finally use those features to make predictions.
Because operators are modular and have uniform data
flow interfaces, a pipeline framework allows easy exper-
imentation with overall architecture. For example, one
operator can be directly substituted for another, or a
series of operators could be rearranged.

In designing ML-o-scope, we focus on deep convolu-
tional neural networks. As pipelines, this class of model
architecture uses different compositions of convolutional
and other image processing operators for feature extrac-
tion, followed by typical neural network classification
structures. Such pipelines add the ability to train the

3



feature extraction components together with the pre-
dictive components, via gradient back-propagation. In
certain respects, this represents a way to automate,
through learning, the difficult task of feature engineer-
ing.

3.2 Convolutional Neural
Networks

In general, an artificial neural network is a pipeline
where operators are described as layers of so-called neu-
rons. A neuron computes a function on inputs from
the preceding layer and passes the result, sometimes
called the neuron’s activation, to outputs in the suc-
ceeding layer. Within each layer, all neurons compute
the same function, but individual neurons may have dis-
tinct sets of inputs and outputs and may assign different
weights to their inputs. Different types of layers are de-
fined by the number and pattern of connections between
neurons, and the functions they compute. Successions
of fully connected layers, where neurons receive input
from every output in the preceding layer, function as
predictive units [15]. Convolutional layers’ neurons are
connected only to a local neighbors of outputs from a
preceding layer in such a way that they compute the
convolution of an input ”image” with a filter. We de-
scribe convolution in greater detail below. Other types
of layers may perform other types of data and image
processing including contrast normalization and sam-
pling.

As described above, a complete network architecture is
a pipelined series of feature extraction layers, like convo-
lutions and down-sampling, followed by predictive lay-
ers. When applied to object classification, the output
of a pipeline will be a vector of probabilities predict-
ing to which class an input image belongs. This output
can be used by an optimization algorithm, like gradient
descent, to update the pipeline and reduce error. Back-
propagation is an algorithm that allows this optimiza-
tion process to be applied to all the layer in the network,
including those involved in feature extraction.

3.2.1 Convolution

Since many of the visualizations implemented in ML-o-
scope relate to convolutional operators, we give a brief
review of convolution. Convolution applies a filter to an
image to produce a new image. A filter is a k×k weight-
matrix where k is an odd number (so that the matrix
has a center pixel). Pixels in the output image are pro-
duced by placing the filter on top of the input image,
with its center aligned at the corresponding pixel, and

computing the dot product of the filter with the pixels
below it.

(Michael Plotke / CC-BY-SA-3.0)

Figure 2. Image convolution.

In effect, the convolution moves the filter across the im-
age and replaces each pixel with some filtered combi-
nation of its neighbors. In fact, convolutional trans-
formations can perform various useful image processing
functions, like emphasizing edges and computing gra-
dients of hue and value. Moreover, deep successions
of convolutions have been shown to produce image en-
codings that are favorable for classification, owing to
emergent invariance to translation and deformation [1].
But exactly what is computed—and its usefulness for
classification—depends on the filters used, and therefore
success of a convolutional network depends crucially on
choosing good filters.

3.3 Pipeline Design Space

Recent success in image classification has come from
going deeper: composing pipelines with more con-
volutional layers and more filters per layer. By
learning features instead of engineering them directly,
back-propagation has given well-designed, well-tuned
pipelines a major advantage in complex domains like
vision.

But in a certain respect, the promise of automatically
learned features is undercut by the imposition of a new
challenge: pipelines are complicated entities that are
difficult to design. The problem shifts from engineer-
ing good features to engineering a pipeline capable of
learning good features.

The case of convolutional neural networks is illustrative
of the difficulty of optimization. Although at a high
level the design is straightforward—a sequence of convo-
lutional operators followed by a classifier—many details
need to be tuned. At the architectural level, the number
of convolutional layers must be determined. Additional
convolutions tend to improve model performance, but
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at some point the marginal return of another layer is
outweighed by its added complexity. The number and
position of non-convolutional operators—both for fea-
ture extraction, e.g., sampling and normalization, and
for prediction—must also be decided.

More decisions are attendant on the level of individual
operators. Convolutional operators have no shortage
of hyper-parameters, including, the number of filters in
them, the size of those filters, how those filters con-
nect to filters in the layers before and after, and so
on. Hyper-parameters of non-convolutional layers in-
clude sampling ratios, and fully-connected layer sizes.
Learning parameters like gradient descent step size, reg-
ularization coefficients, and initial model weight distri-
butions add yet more dimensions to the design space
that must be tuned.

Finally, these various design decisions cannot in general
be made in isolation from one another. Properties of one
operator will affect the behavior of other downstream
from it. Moreover, large-scale pipelined models are run
in resource constrained settings. For example, the deep
convolutional architecture of Krizhevsky et al. [10] is de-
signed to saturate a specific model GPU. In this regime,
decisions to allocate more resources to one operator,
e.g., more filters in a convolutional layer, must trade
decreased performance elsewhere in the model.

All of these factors can have a dramatic impact on model
performance and complexity. By offering visual tools
to analyze the effects of design decisions, ML-o-scope
enables users to explore the design space without blindly
trying all possible permutations.

4 The ML-o-scope System

We implemented the ML-o-scope system to investi-
gate the usefulness of visual exploratory analysis ap-
plied to convolutional neural network pipeline optimiza-
tion. ML-o-scope is a light-weight web application
that allows users to visually examine saved snapshots
of a trained model. This section gives an overview of
ML-o-scope’s system architecture and the visual and
navigational features that aid model exploration and di-
agnosis.

4.1 Representing Models

Most features of ML-o-scope are built upon a core ab-
stract data model of convolutional neural networks. The
back-end supports three classes of visualization: views
of model parameters, views of features (data trans-
formed by the model), and summary views. Parame-

ter and feature views, as well as navigational features,
access data and meta-data from saved model instances
through this core abstraction. Summary views are sup-
ported by a separate pre-computed statistics database
described below.

The data model for queries includes model checkpoints,
layers, and model parameters. A model checkpoint is a
complete instance of the model at some point during the
training process, typically measured in epochs or itera-
tions. Model instances contain a set of layers, defined by
their architecture, and each layer contains some num-
ber of parameters. Often, parameters are grouped in a
natural way, as is the case with filters in convolutional
layers. ML-o-scope stores meta-data about connected
models that describe overall pipeline architecture and
details about each layer.

Different implementations of convolutional pipelines
store models in distinctive formats that may not align
with ML-o-scope’s own representation. To handle
this heterogeneity, ML-o-scope provides an interface
to register adaptor code. The adaptor abstraction
consists of a core set of query primitives for access-
ing checkpoints, layers, and parameters, as well as
meta-data about pipeline architecture. With adap-
tors, all connected model instances can be accessed
through the same abstract data layer. We have imple-
mented adaptors for models trained by decaf, caffe,
and cuda-convnet, each of fewer than 100 lines of
python.

4.2 Supporting Views and
Navigation

Visualizations of model parameters can be built directly
from the results of model queries. Visualizations of in-
termediate feature data, on the other hand, require the
model to be evaluated on some input data. Our model
adaptor interface allows us to import a model check-
point into decaf [3], a python native implementation
of convolutional neural networks, and evaluate it on de-
mand.

Views of feature data further depend on access to a col-
lection of image data from which to draw examples. Like
model instances, data sets can be connected to ML-o-
scope via an adaptor interface. Data adaptors imple-
ment access to individual images in the data set, and can
optionally provide meta-data about each image. Basic
access allows users to find random images to test against
the model. File names, keywords, and class label meta-
data allows ML-o-scope to give users a simple faceted
search interface to the data set.

Large pipelined models can contain an overwhelming
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number of parameters, too many to visually inspect
and analyze together at once. ML-o-scope uses model
meta-data to provide users with a navigational interface
that allows reasonably sized chunks of the model to se-
lected and viewed. Users can select which layer to look
at, and can further select a subset of parameters (or fil-
ters, in the convolutional case) in that layer. In addition
to these layer- and parameter-axes, ML-o-scope pro-
vides navigation along the time-axis. By keeping track
of model snapshots, the system can build parameter and
feature views based on any checkpointed moment during
training.

4.3 Statistics Engine

Several of our visualizations require summary statis-
tics that are be computed over a complete data set.
These summaries include prediction performance mea-
sures, e.g., counts for building confusion matrices, and
analysis of output probability vectors including cluster-
ing and indexing. Since generating model output over a
full data set can be time consuming, we provide an en-
gine to compute statistics in batches and save them to
a database. In the same way that views of feature data
are built internally with decaf, the statistics engine can
import a model instance through the standard interface
and run it on a connected data set. This is sufficient for
a small data set like CIFAR-10, but at ImageNet scale
it often makes more sense to run data through each
model with its native platform (e.g., the GPU acceler-
ated caffe system). In this case, the statistics engine
can take raw output of predictions and class probabil-
ities directly. At run time, the statistics database is
queried via the same web service that powers our filter
visualizations.

Currently, the statistics engine calculates the following
statistics over the corpus at each time step: the set of
class probabilities by image; counts of model confusion,
i.e., how often images from each class were predicted
to belong to each other class; an index of images by
their actual and predicted classes; and a set of clusters
and the k-nearest neighbors of those clusters that are
calculated from the class posterior probability vectors
output by the model. Each of these statistics is used to
drive one of the views described below.

4.4 Web Application

We provide access to the model query interface, visual-
ization generation, and statistics engine via a RESTful
interface backed by a flask (python) application. The
client uses web requests to this interface to query for

model state, feature data, meta-data, and summary in-
formation. Responses are returned as either bitmap im-
age data (PNG), vector graphics (SVG), or JSON. The
client is responsible for issuing requests and handling re-
sponses in order to display views and enable interactive
exploration. Since exploratory analysis often involves
issuing many related queries, the server makes heavy
use of caching to reduce latency when the same object
is requested multiple times.

ML-o-scope allows all parameter and feature-space
views to be animated, so that users can watch how they
evolve over the course of training. To avoid flickering in
the animation, which could contribute to change blind-
ness and a [4] diminished experience, the front-end uses
several optimizations to maintain a responsiveness. Im-
ages are pre-fetched by the browser and positioned off-
screen until they have loaded completely. With this
approach, frame updates are seamless and don’t require
a round-trip to the web service.

5 Visual Analysis

We present the views supported by ML-o-scope to help
model builders understand their convolutional neural
networks. The main display lets users interactively ex-
plore different components of a network and view its in-
ternal structure directly and via features extracted from
sample data. Additional summary views are available in
subsidiary displays. These provide supporting informa-
tion to help the user assess hypotheses about the cause
of certain types of errors and understand the interaction
between classes. All these visualizations help users to
understand how the model changes over the course of
training. That is, they provide a mode of exploration
and comparison across time steps. We feel that this is an
important and differentiating characteristic of our work
that may enable new insights into the model training
process.

5.1 Main View: Filters and
Features

Our primary display is a time-lapse view of model devel-
opment for a particular network layer. Visualizations of
both the layer’s constituent parameters, and of the fea-
tures produced by the layer, given an input image, are
available in this display (see Figure 1). At the bottom of
the window are timeline controls to support checkpoint
selection and animation.

All of our views update in response to the current time-
line value. Animated views allow users to see how the
model evolves over the course of training and to observe
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Figure 3. ML-o-scope primary display. (1) Filter details; (2) image selector; (3) network overview and
navigation; (4) filter visualization; (5) visualization selector; (6) selection helper; (7) animation progress slider.

how structure emerges. To take one example, the filters
shown at right in Figure 1, from the first convolutional
layer of a model, progress into Gabor filters [14], a well
studied type of convolutional feature extractor. They
can be interpreted as deformation-invariant edge detec-
tors [1], an effect that we can see in the visualized fea-
ture data in the figure, at center. It is important to note
that the model converges on these filters automatically
as part of the training process.

Additional elements of the main interface are high-
lighted in Figure 3. The top of the page displays an in-
teractive graph representation of the model’s pipelined
architecture. Users can interact with the graph to navi-
gate the network and display meta-data. Details about
the currently selected layer are provided in the upper-
left corner of the display.

A search interface for the image training corpus allows
users to find and select images to pass to the model and
view. Selected images are displayed in the feature space
of the currently selected layer of the network, so users
can visualize the output of each operator. The sidebar
displays a histogram of the model’s predicted classes for
the selected image.

5.2 Summary Views

5.2.1 Confusion Matrix

Figure 4. Confusion matrix display.

The confusion matrix view, shown in Figure 4, helps
users to diagnose “hot-spots” of misclassified images in
their model. The matrix’s rows correspond to true im-
age classes and its columns correspond to the model’s
predicted classes. Each cell displays the number of im-
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ages from one class predicted to be in another (or, on
the diagonal, the same) class, for example, the number
of dog images predicted to contain cats. Shading is used
to emphasize cells with large counts so users can quickly
perceive troublesome classes. A perfect classifier would
produce a diagonal confusion matrix with zeros every-
where but on the main diagonal, so off-diagonal shading
represents problems.

When the user mouses over an individual cell, the cell
expands to show a sample of images that fall into it. If
the misclassified images share common visual structure,
the user may choose to give special treatment to this
structure in a future version of their model. For exam-
ple, if dark pictures tend to be misclassified, the user
might choose to normalize input images before feeding
them into the network.

Like the main filter display, the confusion matrix view
is linked to the timeline slider to show how the model
evolves over time.

5.3 Clustered Images

To further aid in the diagnosis of classification errors,
the clustered images view displays a set of sample im-
ages clustered by their similarity in the raw pipeline out-
put, normally a vector of predicted class probabilities.
We cluster using K-Means with a Euclidean distance
metric. For each cluster, we display the closest images
to the cluster center. If a user wants to understand the
possible causes of a set of misclassified images, they can
inspect these clusters for anomalies like, say, a group of
images of far-away airplanes that look like birds. The
user may then adjust the parameters of their model to
better handle this case, for example, by increasing the
resolution of filters at an early layer.

Again, the time slider appears in this view to enable the
user to see how these clusters evolve as the output of the
fully connected layer changes at each model checkpoint.
To our knowledge, this is a novel approach for diagnos-
ing classification issues in the context of convolutional
neural networks.

5.4 Direct Comparison

In the direct comparison view, shown in Figure 5, ML-
o-scope provides one more way to analyze changes in
the model made over the course of training. Users select
two points in time during training and then can display
visualizations of those two snapshots side-by-side. As in
the main display, users select which parts of the model
to view, and whether to view model parameters directly

or via extracted feature data. While the time-step ani-
mations of the main display allow a user to explore the
incremental evolution of the model, this view highlights
major cumulative changes across distant steps.

We can already see some utility and insights with this
view. For example, filters that are initialized with high-
variance weights tend to retain high variance weights
in the final model. The filters in the fifth row and last
row of the first convolutional layer all start with high
variance and remain high variance at the end. This
information can be used to inform approaches to model
initialization and regularization.

Figure 5. Direct comparison display.

6 Evaluation

To measure the usefulness of ML-o-scope, we have in-
strumented it to connect to models trained by any of
several systems, including Krizhevsky’s cudaconvnet

[8], and Jia’s caffe [7] and decaf [3]. Both
cudaconvnet and caffe use hardware acceleration to
allow the training of an ImageNet scale model in a few
days on a single machine with a recent generation GPU.
cudaconvnet required slight modification to save inter-
mediate model snapshots during training.
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We used these systems to train models on two data sets.
CIFAR-10 [9] is a modestly sized collection of images de-
picting ten classes of objects. It includes 60,000 images,
each 32 by 32 pixels, drawn from the 80 Million Tiny Im-
ages data set [16] which consists of ”in the wild” images
scraped from the web. Despite its small size, CIFAR-
10’s origins make it a rich and challenging data set for
object classification.

ML-o-scope has also been instrumented for ImageNet
2012 [5] data, and models trained on it. This data, from
the ILSVRC 2012 challenge, consists of over one million
full size images from web sources like Flickr.

6.1 Exploratory Analysis

ML-o-scope has proved useful for understanding the
performance of CIFAR-10 and ImageNet models. The
following use case illustrates the power of interactive
exploratory analysis applied to model pipelines.

With cudaconvnet, we trained on CIFAR-10 a convo-
lutional neural network architecture reported to achieve
good performance with relatively little training [8]. The
architecture consists of three stages of convolution and
down-sampling, followed by a fully-connected network
layer. Here the convolution and down-sampling opera-
tors represent the feature extraction component of the
pipeline, and the fully-connected layer acts as a ”uni-
versal classifier” [15]. This pipeline takes about ten
epochs, or passes over the data, to train to convergence.
We took checkpoints of the model before and after each
epoch, and loaded these checkpoints into ML-o-scope
for analysis.

Figure 6. Weights in the penultimate fully con-
nected layer of a CIFAR-10 model, as initialized
(left) and after 8 epochs of training. Lighter pix-
els correspond to higher weights.

In exploring the development of model parameters in
each stage of the pipeline, we observed that the visual-
ization of the fully-connected operator remained static
as training progressed. Since we expect learning to
change the values of model parameters—which had been
initialized randomly—we also expected to see the visu-

alizations change. Suspecting a bug in our implemen-
tation, we queried the model checkpoint files directly
and found that, indeed, the parameters of the fully con-
nected layer remained essentially static during train-
ing.

This observation inspired follow-up experiments. We
trained a slight variation of the original architecture
where the fully connected component was replaced with
multiplication by a random matrix. This is equivalent
to the original architecture with learning disabled in
that layer. The modified architecture had no loss of
predictive accuracy on the CIFAR-10 test set (both ar-
chitectures achieve about 25-26% error after 10 epochs),
despite having fewer than 6% as many learned model pa-
rameters as the original. In principle, identifying non-
learned components of a pipelined architecture like this
could be exploited by software implementations to re-
duce training time per iteration.

It should be noted that this observation was specific
to the model design and data set. For example, the
corresponding fully connected layers in the popular
Krizhevsky, et. al ImageNet architecture learn sig-
nificantly throughout training. This variability across
data sets and domains emphasizes the need for a tool
like ML-o-scope to explore and diagnose new models
trained for new applications.

6.2 User Study

ML-o-scope is intended as a tool to help machine
learning practitioners design and tune optimal pipelined
models in less time. We propose to directly measure
its applicability to this problem domain through a user
study comparing the system against the current alter-
natives. The target user is an analyst or data scien-
tist who lacks intimate knowledge of model design and
composition—including of particular types of pipelines
like deep convolutional neural networks—but who has
practical familiarity with machine learning models and
how to construct them from data.

Our experimental design includes a small group (N =
20) of target users in two subgroups, namely, academic
(students) and professional. To begin, participants are
given a brief introduction to the basics of pipelined mod-
els, and of convolutional neural networks in particular,
including a short guide with suggestions and best prac-
tices for tuning them. Participants should already be
familiar with standard concepts like cross-validation,
learning rates, regularization, and so on.

After the introduction, participants are given a series of
model-tuning tasks to complete. For each task, the user
is provided with a base architecture of a convolutional
neural network pipeline appropriate for the CIFAR-10
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data set, and a set of sub-optimal base parameters. In
addition, users are given an interface where they can
modify parameter settings, and a mechanism to train
and evaluate a model given their current settings. The
goal of the task is to minimize model error against the
CIFAR-10 test set within a fixed budget of model itera-
tions. To avoid overwhelming users, the task is limited
to tuning a selected set of hyper-parameters (e.g., fil-
ter sizes and filter counts per layer), and the pipeline
architectures remain fixed.

For some of the tasks, participants have access to ML-
o-scope to review the models trained at each iteration.
Half of the participants have ML-o-scope for the first
half of tasks, and the other half for the second half only.
In addition to the regular introduction, participants re-
ceive a brief introduction to ML-o-scope before the
tuning task where they are allowed to use it.

As a benchmark, we measure the performance of an
expert designer of convolutional neural networks on the
same tuning task, without the use of ML-o-scope. The
two primary metrics are: first, participants’ models test
accuracies after the budget of tuning iterations is ex-
pended; and second, the number of tuning iterations it
takes participants’ models to achieve near-expert level
test accuracy, as determined by the expert designers re-
sults. Participants’ performance distributions, accord-
ing to both metrics, are compared for tasks completed
with and without the aid of ML-o-scope. An impor-
tant secondary metric is the time taken to complete
each task. We expect that participants will achieve
higher accuracy with fewer iterations when using ML-
o-scope, likely at the cost of taking more time per it-
eration.

We further compare against automated tuning tech-
niques’ performance on the same tuning tasks. Two au-
totuning implementations—one applying the Bayesian
techniques of Yamins, Tax, and Bergstra [18], the other
using random search of the parameter space—are run
on each user task, with the algorithmic search space
set to only those parameters users are asked to opti-
mize. For each implementation, we measure the num-
ber of iterations to reach near-expert performance, as
defined above, and contrast the results with user per-
formance with and without ML-o-scope. We argue
that the number of iterations is of greater importance
than the time per iteration because large scale pipeline
tuning time is typically dominated by the time it takes
to train each model revision, and this quantity is inde-
pendent of the tuning method. We expect that human
performance dominates algorithmic performance mea-
sured in number of iterations.

Beyond measuring the overall effectiveness of ML-o-
scope, we would like to study the contributions of in-

dividual system features and visualizations. To deter-
mine these effects, participants are asked to complete a
brief survey after finishing all tuning tasks. The survey
asks users to explain why they made specific changes
to hyper-parameters during the tuning process, what
techniques they found successful, and where they had
difficulty. We expect this qualitative feedback to give
insight into the uses and usefulness of specific visualiza-
tions.

7 Future Directions

To date, ML-o-scope has been engineered for a spe-
cific type of pipelined model, namely convolutional neu-
ral networks for visual object classification. The prin-
ciples behind its design, however, are applicable to a
wider domain of both models and applications. We see
the most immediate promise from supporting more gen-
eral vision pipelines, for example, visualization support
for standard features like HOG and SIFT. These exten-
sions would enable diagnostics of a more open pipeline
design space not directly tied to the neural network
paradigm.

In addition, the system provides a solid platform to
explore other applications of visualization to pipelined
models. For example, implementing new pipeline opera-
tors for feature extraction from image data is a difficult
undertaking, and visualization can help with develop-
ment and debugging of new code. Adapting ML-o-
scope for code diagnostics could be a powerful exten-
sion to the system.

8 Conclusion

We have presented ML-o-scope, a visualization tool
aimed at helping experts understand and diagnose issues
with convolutional neural networks. The tool allows
users to explore various aspects of structurally complex
pipelined models—from understanding the development
of convolutional structure, to better understanding com-
mon types of misclassification—and demonstrates the
applicability of visualization to the challenges of opti-
mizing complex object-recognition pipelines.
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